Viren

Dieser Artikel erklärt Viren als infektiöse Nukleinsäuren, weitere Wortbedeutungen unter Viren (Begriffsklärung).

Viren (Singular: das Virus, außerhalb der Fachsprache auch der Virus; Plural: Viren; von lat. virus, -i, n. „Gift, Saft, Schleim“) sind infektiöse Partikel, die sich außerhalb von Zellen (extrazellulär) durch Übertragung verbreiten, aber nur innerhalb einer geeigneten Wirtszelle (intrazellulär) vermehren können. Sie selbst bestehen nicht aus einer Zelle. Alle Viren enthalten das Programm (einige auch weitere Hilfskomponenten) zu ihrer Vermehrung und Ausbreitung, besitzen aber weder eine eigenständige Replikation noch einen eigenen Stoffwechsel und sind deshalb auf den Stoffwechsel einer Wirtszelle angewiesen. Daher sind sich Virologen weitgehend darüber einig, dass Viren keine Lebewesen sind – wobei die wissenschaftliche Diskussion noch nicht als abgeschlossen anzusehen ist,[1] da beispielsweise bei der Genomgröße des Cafeteria-roenbergensis-Virus eine Abgrenzung anhand der Größe des Genoms zu verwischen beginnt.[2]

Etwa 1,8 Millionen verschiedene rezente Arten von Lebewesen sind bekannt, vermutlich existieren sehr viel mehr. Jedes einzelne könnte Wirt für unzählige auf ihn angepasste Viren sein.[3] Davon sind bislang lediglich um die 3000 Virenarten identifiziert worden (Virusklassifikation).[4] Viren befallen also Zellen von Eukaryoten (Pflanzen, Pilze, alle Tiere einschließlich des Menschen) und Prokaryoten (Bakterien und Archaeen). Viren, die Prokaryoten als Wirte nutzen, werden Bakteriophagen genannt.

Die Wissenschaft, die sich mit den Viren beschäftigt, ist die Virologie.

Blauzungenvirus im Elektronenmikroskop. Die Markierung entspricht 50 nm

Erforschungsgeschichte

Erst seit dem späten 19. Jahrhundert sind Viren als eigene biologische Einheit bekannt. Die Beschreibungen von Viruskrankheiten sind aber sehr viel älter, ebenso die ersten Behandlungsmethoden. Aus Mesopotamien sind Gesetzestexte aus der Zeit von 1000 v. Chr. überliefert, die beschreiben, was der Besitzer eines tollwütigen Hundes tun muss. Aus ägyptischen Hieroglyphen sind Darstellungen bekannt, die vermutlich die Folgen einer Polio-Infektion zeigen.

Die Bezeichnung „Virus“ wurde zum ersten Mal von Cornelius Aulus Celsus im ersten Jahrhundert v. Chr. verwendet. Er bezeichnete den Speichel, durch den Tollwut übertragen wurde, als „giftig“. Im Jahr 1882 führte der Deutsche Adolf Mayer bei Experimenten mit der Tabakmosaikkrankheit erstmals unwissentlich eine virale Erregerübertragung (Transmission) durch, indem er den Pflanzensaft infizierter Pflanzen auf gesunde Pflanzen übertrug und bei diesen so ebenfalls die Krankheit auslöste.

Diese Übertragung war bereits im 18. Jahrhundert mit dem Wort Virus assoziiert. So beschreibt die Londoner Times in einem Nachruf auf einen Arzt dessen Virusinfektion: Beim Zunähen einer sezierten Leiche hatte er sich in die Hand gestochen, „which introduced some of the virus matter, or, in other words, inoculated him with putridity.“[5]

Dimitri Iwanowski wies unabhängig von Mayer im Jahr 1892 in einem Experiment nach, dass die Mosaikkrankheit bei Tabakpflanzen durch einen Stoff ausgelöst werden kann, der durch Filtration mittels bakteriendichter Filter (Chamberland-Filter) nicht entfernt werden konnte und dessen Partikel deshalb deutlich kleiner als Bakterien sein mussten. Der erste Nachweis eines tierischen Virus gelang 1898 Friedrich Loeffler und Paul Frosch, die das Maul-und-Klauenseuche-Virus entdeckten (siehe hierzu auch die Virologische Diagnostik). Die Größe vieler Viren wurde in den 1930er Jahren durch William Joseph Elford mit Methoden der Ultrafiltration bestimmt.

Der bislang älteste – indirekte – Beleg für eine durch Viren verursachte Erkrankung wurde aus den deformierten Knochen eines 150 Millionen Jahre alten, kleinen zweibeinigen Dinosauriers (Dysalotosaurus lettowvorbecki) abgeleitet, der im Berliner Museum für Naturkunde verwahrt wird und Symptome von Osteodystrophia deformans aufweist, die auf eine Infektion mit Paramyxoviren zurückgeführt werden.[6]

Eigenschaften

Viren kommen in zwei Erscheinungsformen vor:

  • Erstens als Nukleinsäure (DNA oder RNA) in den Zellen des Wirts. Die Nukleinsäure enthält die Informationen zu ihrer Replikation und zur Reproduktion der zweiten Virusform. Die Wirtszelle repliziert die Nukleinsäure.
  • Zweitens als Virion, das zur Verbreitung des Virus aus den Wirtszellen ausgeschleust wird.

Viren haben keinen eigenen Stoffwechsel, denn sie besitzen kein Zytoplasma, das ein Medium für Stoffwechselvorgänge darstellen könnte, und ihnen fehlen sowohl Ribosomen wie auch Mitochondrien. Daher können sie allein keine Proteine herstellen, keine Energie umwandeln und sich auch nicht selbst replizieren. Im Wesentlichen ist ein Virus also eine Nukleinsäure, auf der die Informationen zur Steuerung des Stoffwechsels einer Wirtszelle enthalten sind, insbesondere zur Replikation der Virus-Nukleinsäure und zur weiteren Ausstattung der Viruspartikel (Virionen). Die Replikation des Virus kann daher nur innerhalb der Wirtszelle erfolgen.

Virionen

Aufbau von Virionen

Ein Viruspartikel außerhalb von Zellen bezeichnet man als Virion (Plural Viria, Virionen). Virionen sind Partikel, die aus Nukleinsäuren, und zwar entweder Desoxyribonukleinsäuren (DNA) oder Ribonukleinsäuren (RNA), und meistens aus einer Protein-Hülle (Kapsid) bestehen. Letzteres fehlt jedoch z. B. beim Influenzavirus, welches stattdessen ein Ribonucleoprotein aufweist. Einige Virionen sind zusätzlich von einer mit viralen Membranproteinen durchsetzten Lipiddoppelschicht umgeben, die als Virushülle bezeichnet wird. Viren, die vorübergehend bis zum Beginn der Replikationsphase zusätzlich zum Kapsid eine Virushülle aufweisen, werden als behüllt bezeichnet, Viren ohne derartige Hülle als unbehüllt. Einige Virionen besitzen andere zusätzliche Bestandteile.

Der Durchmesser von Virionen beträgt etwa 15 nm (beispielsweise Circoviridae) bis 440 nm (Megavirus chilensis). Virionen sind deutlich kleiner als Bakterien, jedoch etwas größer als Viroide, welche weder ein Kapsid noch eine Virushülle besitzen.

Das Proteinkapsid kann unterschiedliche Formen haben, zum Beispiel ikosaederförmig, isometrisch, helikal oder geschossförmig.

Serologisch unterscheidbare Variationen eines Virus nennt man Serotypen.

Virionen sind zur Verbreitung der Viren geeignet. Sie dringen ganz oder teilweise (mindestens ihre Nukleinsäure) in die Wirtszellen ein (infizieren sie) und die Virus-Nukleinsäure programmiert danach deren Stoffwechsel zur Vermehrung der Virus-Nukleinsäure und zur Produktion der anderen Virionen-Bestandteile um.

Betrachtung der systematischen Stellung

Viren sind im Wesentlichen bloße stoffliche Programme zu ihrer eigenen Reproduktion in Form einer Nukleinsäure. Ob demnach Viren als Lebewesen bezeichnet werden können, ist abhängig von der Entscheidung für eine der unterschiedlichen Definitionen von Leben. Eine einzige, unwidersprochene und damit allgemein anerkannte Definition hierfür gibt es bislang nicht. Daher findet sich auch unter Wissenschaftlern keine Einigkeit in der Beantwortung dieser Frage.

Hinsichtlich der Einordnung von Viren zu den Parasiten bestehen ebenfalls verschiedene Ansichten. Ein Teil der Wissenschaftler betrachtet sie als solche, da sie einen Wirtsorganismus infizieren und seinen Stoffwechsel für ihre eigene Vermehrung benutzen. Diese Forscher definieren also Viren als obligat intrazelluläre Parasiten (Lebensformen, die zwangsläufig Parasiten innerhalb einer Zelle sind), die mindestens aus einem Genom bestehen und zur Replikation eine Wirtszelle benötigen. Das bedeutet, dass Viren zwar spezifische genetische Informationen besitzen, aber nicht den für ihre Replikation notwendigen Synthese-Apparat. Prionen, funktionslose DNA-Sequenzen, Transposons und Viren werden als parasitär klassifiziert, ohne auf eine Klassifizierung als Lebewesen einzugehen.

Ursprung

Der Ursprung der Viren ist nicht bekannt. Es gibt dazu nur Vermutungen, aber keine definitiven Beweise. Die meisten Forscher nehmen heute an, dass es sich bei Viren nicht um Vorläufer des zellulären Lebens handelt, sondern eher um Gene von Lebewesen, die sich im Laufe der Zeit aus dem Lebewesen lösten. Grundsätzlich wurden und werden noch immer mehrere Möglichkeiten diskutiert, wobei es dabei im Prinzip zwei verschiedene Ansätze gibt:

  • Viren sind sehr ursprünglich, entstanden noch vor der ersten Zelle schon in jener chemischen „Ursuppe“, die auch die primitivsten Lebensformen hervorgebracht hat, und sind mit RNA-Genomen Überbleibsel der prä-DNA-Welt. Dieser Ansatz wurde beispielsweise von F. d’Hérelle (1924) und S. Luria (1960)[7] vertreten.
  • Viren sind eine Art Schwundstufe von schon bei ihrer Entstehung existierenden vollständigen Organismen.

Nach diesen beiden unterschiedlichen Ansätzen sind in der Wissenschaft drei Theorien formuliert worden.

  1. Abstammung von selbstreplizierenden Molekülen (Coevolution). Diese Theorie nimmt an, dass Entstehung und Evolution der Viren von den einfachsten Molekülen ausgingen, die überhaupt zur Selbstverdoppelung in der Lage waren. Anschließend hätten sich dann manche derartigen Moleküle schließlich zu Organisationseinheiten zusammengefunden, die man als Zellen ansehen kann. Parallel dazu gelang es anderen Molekülen, sich in Viruspartikeln zu verpacken, die sich parallel zu den Zellen weiterentwickelten und zu ihren Parasiten wurden.[8]
  2. Virusentstehung durch Degeneration (Parasit). Diese Theorie basiert auf dem schon oben dargestellten zweiten Möglichkeitsansatz, wonach die ersten Viren ursprünglich aus freilebenden Organismen wie beispielsweise Bakterien hervorgegangen sind, die langsam und kontinuierlich immer mehr von ihrer genetischen Information verloren haben, bis sie schließlich zu Zellparasiten wurden, die darauf angewiesen sind, dass eine Wirtszelle ihnen die verloren gegangenen Funktionen zur Verfügung stellt.
  3. Virusentstehung aus wirtszelleigenen RNA- oder DNA-Molekülen. Diese dritte und für die Forschung als am wahrscheinlichsten erscheinende Theorie besagt, dass Viren unmittelbar aus RNA- oder DNA-Molekülen der Wirtszelle entstanden sind. Diese selbständig gewordenen Nukleinsäuren haben zwar als das genetische Material der Viren die Fähigkeit erworben, sich unabhängig vom Genom der Wirtszelle oder ihrer RNA zu vermehren, sind aber letztlich doch Parasiten geblieben (S. Luria, 1960).[9][10] Beispiele von möglichen Übergangsformen sind Transposons und Retrotransposons.

Vermehrung und Verbreitung

Virusreplikation

Ein Virus selbst ist zu keinen Stoffwechselvorgängen fähig, daher braucht es Wirtszellen zur Fortpflanzung. Der Replikationszyklus eines Virus beginnt im Allgemeinen, wenn sich ein Virion an eine Wirtszelle anheftet (Adsorption) und sein Erbmaterial, die Nukleinsäure, ins Zellinnere bringt (Injektion). Wenn das Virion vollständig von der Zelle aufgenommen wird, muss es vor der Replikation erst von seinen Hüllen befreit werden (uncoating). Das Erbmaterial des Virus, seine Nukleinsäure, wird anschließend in der Wirtszelle vervielfältigt und die Hüllproteine sowie gegebenenfalls weitere Bestandteile der Virionen werden anhand der Gene des Virusgenoms ebenfalls von der Wirtszelle synthetisiert (Proteinsynthese/Genexpression). So können in der Zelle neue Viren gebildet werden (Morphogenese), die als Virionen freigesetzt werden, indem entweder die Zellmembran aufgelöst wird (Zell-Lyse, lytische Virusvermehrung), oder indem sie ausgeschleust (sezerniert) werden (Virusknospung, budding), wobei Teile der Zellmembran als Bestandteil der Virushülle mitgenommen werden. Mit Hilfe von Immunoevasinen wird die Immunabwehr des Wirtes unterdrückt.

Eine weitere Möglichkeit ist der Einbau des Virus-Genoms in das des Wirtes. Dies ist der Fall bei temperenten Viren, wie zum Beispiel dem Bakteriophagen Lambda.

Die Auswirkung der Virusvermehrung auf die Wirtszelle nennt man Zytopathischer Effekt (CPE). Es gibt verschiedene Arten des zytopathischen Effekts: Zelllyse, Pyknose (Polioviren), Zellfusion (Masernvirus, HSV, Parainfluenzavirus), intranucleäre Einschlüsse (Adenoviren, Masernvirus), intraplasmatische Einschlüsse (Tollwutvirus, Pockenvirus).

Die Verbreitungswege von Viren sind vielfältig. Eine abstrakte Sicht auf die epidemiologische Kinetik von Viren und anderen Krankheitserregern wird in der Theoretischen Biologie erarbeitet.

Evolution

Aufgrund von phylogenetischen Untersuchungen ist bekannt, dass Viren schon die frühen Vorfahren der Säugetiere infizieren konnten und sich im Verlauf der Evolution mit diesen gemeinsam weiterentwickelt haben. Andere Virusarten infizieren erst seit jüngerer Zeit menschliche Populationen. Für eine Evolution eines Virus (bzw. irgendeines Gens) ist seine Variabilität und Selektion von Bedeutung. Die Variabilität ist (wie bei allen Organismen) durch Kopierfehler bei der Replikation des Erbgutes gegeben, während die Selektion oft durch die (Immun)-Antwort des Wirtes durchgeführt wird.

Variabilität

Höher organisierte Lebewesen haben per Rekombination und Crossing-over bei der geschlechtlichen Fortpflanzung eine sehr effektive Möglichkeit der genetischen Variabilität besonders in Richtung einer Umweltanpassung und damit Weiterentwicklung ihrer jeweiligen Art entwickelt. Virionen beziehungsweise Viren zeigen als überdauerungsfähige Strukturen, die für ihre Vermehrung und damit auch Ausbreitung auf lebende Wirte angewiesen sind, ohne geschlechtliche Fortpflanzung allein mit ihrer Mutationsfähigkeit eine mindestens ebenbürtige Möglichkeit für eine genetische Variabilität.

Dabei ist es dann letztlich unerheblich, dass diese Mutationen im Genom der Viren im Grunde zuerst auf Kopierfehlern während der Replikation innerhalb der Wirtszellen beruhen. Was zählt, ist allein der daraus für die Arterhaltung resultierende positive Effekt der extremen Steigerung der Anpassungsfähigkeit. Während Fehler dieser Art zum Beispiel bei einer hochentwickelten Säugetierzelle zum Zelltod führen können, beinhalten sie für Viren sogar einen großen Selektionsvorteil (siehe dazu Evolution).

Kopierfehler bei der Replikation drücken sich in Punktmutationen, also im Einbau von falschen Basen an zufälligen Genorten aus. Da Viren im Gegensatz zu den höherentwickelten Zellen nur über wenige oder keine Reparaturmechanismen verfügen, werden diese Fehler nicht korrigiert.

Sonderformen der genetischen Veränderung bei Viren werden beispielsweise bei den Influenza-Viren mit den Begriffen Antigendrift und Antigenshift (genetische Reassortierung) dort genau beschrieben.

Einteilung

Nach ihrem Wirtsspektrum werden Viren in vier Gruppen eingeteilt:

  1. Viren, die Bakterien befallen (Bakteriophagen)
  2. Viren, die Algen, Pilze und Protozoen befallen
  3. Viren (und Viroide), die Pflanzen befallen
  4. Viren, die wirbellose Tiere (Invertebraten) und Wirbeltiere (Vertebraten) befallen, oder nur eine Gruppe von beiden

Die meisten Viren infizieren nur in ihrer Gruppe, doch Virusarten der Familie Rhabdoviridae und Bunyaviridae können sowohl Pflanzen als auch Tiere infizieren. Einige Viren vermehren sich nur in Vertebraten, werden jedoch auch ohne eigene Vermehrung passiv von Invertebraten übertragen (Vektor - mechanische Übertragung). Hierbei spielen die Insekten eine herausragende Rolle.[11]

Schreibweise der Virusartnamen

Der offizielle internationale, wissenschaftliche Name eines Virus ist die englischsprachige Bezeichnung, nach der sich stets auch die international gebräuchliche Abkürzung richtet, wie bei Lagos bat virus (LBV). Diese Abkürzung wird unverändert auch im Deutschen verwendet. Folgerichtig lautet die Abkürzung für die deutsche Virusbezeichnung Lagos-Fledermaus-Virus ebenfalls LBV.

In den englischen Virusnamen wie zum Beispiel bei West Nile virus werden normalerweise keine Bindestriche benutzt und das Wort Virus im Unterschied zum Deutschen kleingeschrieben. Der Bindestrich taucht im Englischen nur bei Adjektiven auf, also bei Tick-borne encephalitis virus oder Avian encephalomyelitis-like virus.

In der deutschen Sprache werden die Namen der einzelnen Virusarten jedoch immer mit Bindestrich geschrieben, also West-Nil-Virus, Hepatitis-C-Virus, Humanes Herpes-Virus, Lagos-Fledermaus-Virus, Europäisches Fledermaus-Lyssa-Virus und so weiter. Zusätzliche Nummern bei einzelnen Subtypen werden jedoch im Englischen wie auch im Deutschen nicht mit einem Bindestrich angebunden (außer bei den Abkürzungen), wie u. a. bei Europäisches Fledermaus-Lyssa-Virus 1 (EBLV-1), Herpes-simplex-Virus 1 (HSV-1) und Humanes Herpes-Virus 1 (HHV-1).[12][13][14][15]

Humanpathogene Viren und ausgelöste Erkrankungen

Beim Menschen können eine Vielzahl von Krankheiten durch Viren verursacht werden. Allein diese humanpathogenen Viren sind hier hinsichtlich Genom und Behüllung klassifiziert und in ihrer Taxonomie nach ICTV aufgelistet.

Behüllte Viren

Doppelsträngige DNA-Viren = dsDNA

Einzel(+)-Strang-RNA-Viren = ss(+)RNA

Einzel(−)-Strang-RNA-Viren = ss(−)RNA

Unbehüllte Viren

Doppelsträngige DNA-Viren = dsDNA

Einzelsträngige DNA-Viren = ssDNA

Doppelsträngige RNA-Viren = dsRNA

Einzel(+)-Strang-RNA-Viren = ss(+)RNA

Die wichtigsten beim Menschen krebserzeugenden (karzinogenen) Viren

Diese Gruppe der sogenannten Onkoviren ist weltweit für 10 bis 15 Prozent aller Krebserkrankungen des Menschen verantwortlich, nach Schätzung der amerikanischen Krebsgesellschaft sogar für etwa 17 % der Krebsfälle.[16][17]

Therapie mit Viren

Aktuell wird verstärkt an Therapien geforscht, bei denen Viren zur Heilung von Krankheiten eingesetzt werden. Diese Forschungen umfassen den Einsatz viraler Vektoren unter anderem als onkolytische Viren zur Bekämpfung von Tumoren, als Phagentherapie zur gezielten Infektion und Lyse von zum Teil antibiotikaresistenten Bakterien, als Impfstoff zur Prophylaxe und Therapie von Infektionskrankheiten, zur Erzeugung von induzierten pluripotenten Stammzellen[18] oder zur Gentherapie von Gendefekten.

Problem der Entwicklung antiviraler Medikamente

Da Viren beziehungsweise Virionen im Gegensatz zu Bakterien keine Zellen sind, können sie auch nicht wie solche abgetötet werden. Es ist lediglich möglich, eine virale Infektion und die Virusvermehrung durch Virostatika zu be- oder zu verhindern. Besonders die biochemischen Vermehrungsabläufe können von Virusart zu Virusart sehr unterschiedlich sein, was die Findung eines hemmenden oder unterbindenden Wirkstoffes erschwert.

Da die Vermehrung der Viren im Inneren von normalen Zellen stattfindet und sich dort sehr eng an die zentralen biochemischen Zellmechanismen ankoppelt, müssen die in Frage kommenden antiviralen Wirkstoffe entweder

  • das Eindringen der Virionen in die Wirtszellen verhindern,
  • in den Zellstoffwechsel zum Nachteil der Virusvermehrung eingreifen,
  • oder nach einer möglichen Virusvermehrung in den Zellen das Austreten der neuen Viren aus den Zellen unterbinden.

Andererseits müssen diese gesuchten Wirkstoffe jedoch auch für den Körperstoffwechsel, den Zellverband und/oder den internen Zellstoffwechsel insgesamt verträglich sein, da sonst nicht nur beispielsweise die Virusvermehrung in den Zellen zum Erliegen kommt, sondern schlimmstenfalls auch das (Zell-)Leben des gesamten behandelten Organismus.

Weil diese Bedingungen sehr schwer zu vereinbaren sind, sind die bisher entwickelten antiviralen Medikamente auch oft mit schweren Nebenwirkungsrisiken verbunden. Diese Gratwanderung stellte die Medizin vor schwierige Aufgaben, die bislang meist ungelöst blieben.

Verschärft wird die Entwicklung von effektiven antiviralen Medikamenten außerdem durch die Resistenzentwicklung von Seiten der zu bekämpfenden Viren gegenüber einem einmal gefundenen, brauchbaren Wirkstoff, zu der sie auf Grund ihres extrem schnell ablaufenden Vermehrungszyklus und der biochemischen Eigenart dieser Replikation gut in der Lage sind.

Siehe auch

Literatur

Ältere Literatur
Aktuelle Literatur
  • Hans W. Doerr, Wolfram H. Gerlich (eds.): Medizinische Virologie – Grundlagen, Diagnostik und Therapie virologischer Krankheitsbilder. Thieme, Stuttgart/ New York 2002, ISBN 3-13-113961-7.
  • Walter Doerfler: Viren. Fischer Taschenbuch Verlag, Frankfurt a. M. 2002, ISBN 3-596-15369-7.
  • Guenther Witzany (ed.): Viruses: Essential Agents of Life. Springer, Dordrecht 2012, ISBN 978-94-007-4898-9.
  • Dietrich Falke, Jürgen Bohl u. a.: Virologie am Krankenbett: Klinik, Diagnostik, Therapie. Heidelberg 1998, ISBN 3-540-64261-7. (mit Literaturangaben)
  • Dietrich Falke, Jürgen Podlech: Viren. In: Peter Reuter (Hrsg.): Springer Lexikon Medizin. Springer, Berlin/ Heidelberg/ New York 2004, S. 2273-2282.
  • S. J. Flint, L. W. Enquist, V. R. Racaniello (eds.): Principles of Virology. 2. Auflage. ASM Press 2003, ISBN 1-55581-259-7.
  • Alfred Grafe: Viren – Parasiten unseres Lebensraumes. Springer, Berlin/ Heidelberg/ New York 1977, ISBN 3-540-08482-7.
  • David M. Knipe, Peter M. Howley et al. (eds.): Fields’ Virology. (2 Bände; Standardwerk der Virologie) 5. Auflage, Lippincott Williams & Wilkins, Philadelphia 2007, ISBN 978-0-7817-6060-7.
  • Arnold J. Levine: Viren: Diebe, Mörder und Piraten. Spektrum Akademischer Verlag, Heidelberg 1992, ISBN 3-86025-073-6.
  • Susanne Modrow, Dietrich Falke, Uwe Truyen: Molekulare Virologie. Eine Einführung für Biologen und Mediziner. 2. Auflage. Spektrum-Lehrbuch, Heidelberg 2002, ISBN 3-8274-1086-X. (mit Literaturangaben, englische Übersetzung 2006).
  • Stephen S. Morse: The Evolutionary Biology of Viruses. 1994, ISBN 0-7817-0119-8.
  • Sven P. Thoms: Ursprung des Lebens. Fischer Taschenbuch Verlag, Frankfurt a.M. 2005, ISBN 3-596-16128-2.
  • Luis P. Villarreal: „Viruses and the Evolution of Life.“ ASM Press, Washington 2005, ISBN 978-1-55581-309-3.
  • Ernst-Ludwig Winnacker: Viren: Die heimlichen Herrscher. Wie Grippe, Aids und Hepatitis unsere Welt bedrohen. Eichborn, Frankfurt a.M. 1999, ISBN 3-8218-1598-1.
  • Gottfried Schuster: Viren in der Umwelt. Teubner, Stuttgart 1998, ISBN 3-519-00209-4.
  • Dorothy H. Crawford: The invisible enemy – a natural history of viruses. Oxford Univ. Press, Oxford 2002, ISBN 0-19-856481-3.
  • Brian W. Mahy: The dictionary of virology. Elsevier, Amsterdam 2008, ISBN 0-12-373732-X.

Einzelnachweise

  1. Carter and Saunders: Virology - Principles and Applications, 1st edition, Wiley, 2007, ISBN 0-470-02387-2; S. 6
  2. Matthias G. Fischer, Michael J. Allen, William H. Wilson, and Curtis A. Suttle: Giant virus with a remarkable complement of genes infects marine zooplankton. In: Proceedings of the National Academy of Sciences. 2010. doi:10.1073/pnas.1007615107.
  3. Zehntausende unbekannte Viren im Abwasser auf scinexx.de, veröffentlicht und aufgerufen: 6. Oktober 2011
  4. Paul G. Cantalupo et al.: Raw Sewage Harbors Diverse Viral Populations. mBio Nr. 2, Vol. 5: e00180-11, doi:10.1128/mBio.00180-11 Volltext
  5. Reverend Dr. Henry Peckwell (1747-1781) hatte sich bei dem Stich „eine Art Virusangelegenheit eingefangen, oder anders ausgedrückt, sich das Verderbliche eingeimpft.“ The Times: Death of the Rev. Dr. Peckwell vom 23. August 1787, S. 2. Henry Peckwell in der englischen Wikipedia
  6. Florian Witzmann et al.: Paget disease of bone in a Jurassic dinosaur. In: Current Biology, Band 21, Nr. 17, R647-R648, 2011, doi:10.1016/j.cub.2011.08.006, Volltext
  7. Salvador Edward Luria, James E. Darnell: General Virology, 3. Aufl., John Wiley and Sons, 1978
  8. Luis P. Villarreal & Guenther Witzany (2010): Viruses are essential agents within the roots and stem of the tree of life. Journal of Theoretical Biology 262(4): 698–710. doi:10.1016/j.jtbi.2009.10.014
  9. Löffler und Petrides (Hrsg.): Biochemie und Pathobiochemie, 7. Auflage Springer-Verlag, Berlin Heidelberg New York 2003, ISBN 3-540-42295-1 (4. Aufl. 1990)
  10. David Moreira & Purificación López-García (2009): Ten reasons to exclude viruses from the tree of life. Nature Reviews Microbiology 7: 306–311 (April 2009) doi:10.1038/nrmicro2108
  11. Definition eines Virus
  12. S. Mordrow, D. Falke, U. Truyen: Molekulare Virologie, Heidelberg Berlin, 2. Auflage 2003 ISBN 3-8274-1086-X
  13. C. Mims, H. M. Dockrell et al.: Medizinische Mikrobiologie / Infektiologie. München (Elsevier) 2006 ISBN 3-437-41272-8
  14. N. Suttorp, M. Mielke, W. Kiehl, B. Stück: Infektionskrankheiten. Stuttgart 2004 ISBN 3-13-131691-8
  15. Th. Mertens, O. Haller, H.-D. Klenk (Hg.): Diagnostik und Therapie von Viruskrankheiten – Leitlinien der Gesellschaft für Virologie. 2. Aufl. München 2004 ISBN 3-437-21971-5
  16. Martin, D. and Gutkind J. S.: Human tumor-associated viruses and new insights into the molecular mechanisms of cancer. In: Oncogene. 27, Nr. 2, 2008, S. 31–42. PMID 19956178.
  17. C. Zimmer: Krebs – eine Nebenwirkung der Evolution? In: Spektrum der Wissenschaft 9, 2007, S. 80–88.
  18. M. Stadtfeld et al.: Induced Pluripotent Stem Cells Generated Without Viral Integration, science-online, 25. September 2008, doi:10.1126/science.1162494

Weblinks

Wiktionary Wiktionary: Virus – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Ähnliche Artikel wie "Viren"

17.11.2020
Virologie | Land-, Forst- und Viehwirtschaft
Neue Virusarten setzen Erbsen zu
Wissenschaftler schlüsseln erstmals das Virom der deutschen Erbse auf und finden unter den 35 Viren 25 Arten, die bisher in Deutschland nicht vorkamen.
05.11.2020
Botanik | Virologie | Parasitologie
Genetik des Wirts bestimmt Zusammensetzung von Viren-Gemeinschaften
Pflanzen können von mehreren Viren gleichzeitig befallen werden.
02.11.2020
Virologie | Immunologie
Wie sich das Immunsystem an Viren erinnert
Damit ein Mensch gegen eine Krankheit immun werden kann, müssen sich T-Zellen nach dem Kontakt mit dem Erreger zu Gedächtniszellen entwickeln.
07.10.2020
Virologie
Stammt das Rötelnvirus aus dem Tierreich?
Bisher galt der Mensch als einziger natürlicher Wirt des Rötelnvirus (Rubellavirus), Erreger der Röteln („German Measles“).
02.09.2020
Virologie | Evolution
Viren auf Gletschern liefern Einblick in die Evolution
Ein internationales Team von Wissenschaftlern um Christopher Bellas von der Universität Innsbruck hat das Leben auf Gletscheroberflächen untersucht und stellt mit einer nun in der Fachzeitschrift Nature Communications veröffentlichten Studie bisherige Annahmen über die Evolution von Viren in Frage.
06.08.2020
Botanik | Virologie
Können Bäume eine schwere Grippe bekommen?
Das neuartige Coronavirus SARS-CoV-2 wird derzeit weltweit intensiv erforscht, um es erfolgreich zurückdrängen zu können. Weit weniger bekannt als die Viren, die auf Menschen und Tiere übertragen werden, sind Krankheitserreger, die unsere heimischen Bäume infizieren.
24.06.2020
Virologie
Die Tricks des Immunsystems
Mehr als die Hälfte der Weltbevölkerung trägt das Zytomegalievirus in sich.
10.06.2020
Virologie | Immunologie
Schutz vor dem Immunsystem
Braunschweiger Forscher beschreiben, wie Viren natürliche Abwehrmechanismen lahmlegen.
20.05.2020
Immunologie | Neurobiologie
Interaktion von Immunsystem und Gehirn
Forschende der TU Braunschweig zeigen, dass das Immunsystem Einfluss auf Lernvermögen haben kann.
21.04.2020
Anthropologie | Virologie
Ein optischer Biosensor für das COVID-19-Virus
Einem Team von Forschern der Empa, der ETH Zürich und des Universitätsspitals Zürich ist es gelungen, einen neuartigen Sensor zum Nachweis des neuen Coronavirus zu entwickeln.
09.04.2020
Mikrobiologie | Virologie | Immunologie
Superinfektionen bei Influenza: Jenaer Lungenbläschen-Chip zeigt, wie Bakterien und Viren Zellbarrieren beschädigen
InfectoGnostics-Forscher aus Jena haben ein neues Lungenbläschen-Modell („Alveolus-on-a-Chip“) auf Basis menschlicher Zellen entwickelt.
30.03.2020
Virologie | Immunologie | Biochemie
Phagen-Kapsid gegen Influenza: Passgenauer Inhibitor verhindert virale Infektion
Berliner Forscher haben auf Basis einer leeren und damit nicht-infektiösen Hülle eines Phagen-Virus ein chemisch modifiziertes Phagen-Kapsid entwickelt, das den Influenzaviren sprichwörtlich die Luft zum Atmen nimmt.
19.03.2020
Virologie | Immunologie | Biochemie
Coronavirus SARS-CoV2: BESSY II-Daten beschleunigen die Suche nach Wirkstoffen
Ein Coronavirus hält die Welt in Atem.
26.02.2020
Virologie | Immunologie
Industrielle Gemeinschaftsforschung (IGF) entwickelt neues Verfahren zur Abwehr von Noroviren auf Obst und Gemüse
Viele Norovirus-Erkrankungen sind auf kontaminierte Lebensmittel, vor allem unverarbeitetes oder tiefgekühltes Obst und Gemüse, zurückzuführen.
22.10.2019
Mikrobiologie | Zytologie | Genetik
Die nackte Wahrheit: Wenn ein Mikroorganismus seine Hüllen fallen lässt
Mikroorganismen besitzen eine besonders schützende Zellwand – die sogenannte S-Schicht.
21.08.2019
Botanik | Immunologie
Pflanzenschutz: Forscher entwickeln neuartigen Impfbaukasten
Einfach, schnell und flexibel: Künftig könnten Pflanzen deutlich leichter gegen Viren geimpft werden.
07.08.2019
Paläontologie | Virologie
Naturkundemuseum Berlin weist älteste Viren der Erdgeschichte nach
Ein eidechsenähnliches Tier, das vor 289 Millionen Jahren in der Permzeit lebte, litt an einer Erkrankung des Knochenstoffwechsels, die der Paget-Krankheit des heutigen Menschen ähnelt.
06.03.2019
Zoologie | Virologie | Immunologie
Nahrung spielt wichtige Rolle für Influenza-A-Infektionen bei afrikanischen Säugetieren
Obwohl Influenzaviren weit verbreitet sind, weiß man überraschend wenig über Infektionen bei wild lebenden Säugetieren.
04.03.2019
Zytologie | Virologie
Wie ein Virus seine Wirtszelle überlistet
Proteinstruktur nach mehr als fünfzigjähriger Forschung entschlüsselt.
01.02.2019
Anthropologie | Genetik
Gentherapie macht taube Mäuse hörend
Hörverlust kann bislang nur mit Prothesen, wie Hörgeräten oder Cochlea-Implantaten, behandelt werden.
28.11.2018
Virologie | Fischkunde
Die Viren-Detektive: Geheimnis des „Bachforellen-Sterbens“ gelüftet
Jeden Sommer gehen in Süddeutschland, Österreich und der Schweiz massenhaft Bachforellen zugrunde.
19.07.2018
Virologie | Insektenkunde | Neobiota
Erwiesen: Mücken können tropisches Chikungunya-Virus auch bei niedrigen Temperaturen verbreiten
Frühwansystem Stechmückenmonitoring - Neue im Hochsicherheits-Insektarium des Bernhard-Nocht-Instituts für Tropenmedizin (BNITM) durchgeführte Experimente zeigen, dass sich in der Asiatischen Tigermücke auch bei relativ milden Temperaturen von 18 Grad Celsius Chikungunya-Viren vermehren können.
07.06.2018
Virologie | Immunologie
Sperma hemmt die Zika-Infektion - Warum die sexuelle Übertragungsrate beim Zika-Virus niedrig ist
Hundert Millionen von Zika-Viren können sich im Sperma eines infizierten Mannes tummeln, und doch ist die Zahl der sexuell Infizierten bei dieser Viruserkrankung vergleichsweise gering.
04.04.2018
Mikrobiologie | Virologie | Evolution
Zeitreise in die Evolution von Bakteriophagen der Milchsäurebakterien
In der Molkereiwirtschaft kommen gezielt Milchsäurebakterien zum Einsatz, um die Milchsäuregärung zur Herstellung von Milchprodukten wie Käse, Joghurt oder Butter in Gang zu setzen.

Diese Artikel könnten dir auch gefallen

Die letzten News

04.02.2021
Ethologie | Primatologie
Gedächtnis und Wahrnehmung bei Siebenschläfern - Ein Forschungsprojekt
Seit Oktober liegt er im Tiefschlaf und ihn kann scheinbar nichts wecken.
04.02.2021
Ethologie | Primatologie
Weissbüschelaffen interpretieren die Unterhaltungen zwischen ihren Artgenossen
Weissbüschelaffen nehmen die Laut-Interaktionen zwischen ihren Artgenossen nicht nur als Aneinanderreihung von Rufen wahr, sondern als zusammenhängende Unterhaltungen.
04.02.2021
Mikrobiologie | Biochemie
Verteidigungsbündnis: Mikroskopische Feinde im Visier
Zwei Bakterienspezies kooperieren chemisch miteinander, um Amöben abzuwehren, von denen sie eigentlich verzehrt werden.
03.02.2021
Physiologie | Klimawandel | Meeresbiologie
Korallen verhungern, noch bevor sie bleichen
Neue Erkenntnisse zur Korallenbleiche: Studie der Universität Konstanz zeigt, dass Korallen bereits vor ihrem Bleichen an Nährstoffmangel leiden.
02.02.2021
Genetik | Land-, Forst- und Viehwirtschaft
Bekämpfung von Schadinsekten – Fruchtfliegen ade
Internationales Forscherteam identifiziert ein Gen für die Färbung von Puppenhüllen der echten Fruchtfliegen – dies eröffnet umweltfreundliche Möglichkeiten für eine Schädlingsbekämpfung.
31.01.2021
Anthropologie
Im Gleichtakt mit dem Mond
Hat der Mond Einfluss auf den Menstruationszyklus der Frau? Diese Frage wird seit Langem heiß diskutiert. Eine neue Studie Würzburger Chronobiologen spricht jetzt für solch einen Einfluss. Es ist allerdings kompliziert.
30.01.2021
Ethologie
Nacktmulle sprechen Dialekt
Die einen schnacken Platt, die anderen schwätzen Schwäbisch. Doch nicht nur wir Menschen, auch Nacktmulle haben ihre eigenen Mundarten entwickelt. Wie ein Team berichtet, stärkt das den sozialen Zusammenhalt innerhalb der Nacktmull-Kolonie.
28.01.2021
Taxonomie
Das Nano-Chamäleon
Ein internationales Team hat eine winzige neue Chamäleonart entdeckt.
28.01.2021
Taxonomie
Neue und schon wieder ausgestorbene Flechtenart entdeckt
Um neue Arten zu entdecken, müssen Wissenschaftler*innen nicht immer zu großen Expeditionen aufbrechen.
28.01.2021
Ökologie | Bioinformatik
KI liefert wichtige Informationen über Afrikas Ökosysteme
Ergebnisse eines internationalen Forschungsprojekts zur Kartierung und Zählung einzelner Bäume in Westafrika können dabei helfen, Ökosysteme zu stärken. Eine Auswertung erlaubt nun wertvolle Einblicke in die Ökologie der Region.
28.01.2021
Neurobiologie
In der Zwickmühle
Bei der Flut an Reizen, die ununterbrochen auf uns einbricht, ist es unmöglich auf alles zu reagieren.
28.01.2021
Botanik | Physiologie
Venusfliegenfalle erzeugt magnetische Felder
Physiker verwenden Atommagnetometer, um biomagnetische Signale einer fleischfressenden Pflanze zu messen.
28.01.2021
Botanik | Klimawandel
Was Klimakapriolen bei Pflanzen auslösen können
Der Klimawandel dürfte Pflanzen nicht nur durch Wetterextreme beeinflussen. Auch eine ungewohnte Kombination neutraler Reize – warme und kurze Tage – kann Reaktionen wie Missbildungen der Blätter auslösen.
28.01.2021
Anthropologie | Genetik | Virologie
Das Virus mutiert fröhlich vor sich hin
Bioinformatiker am Universitätsklinikum Jena verglichen in Kooperation mit Partnern in Berlin, Jena, Leipzig und Bad Langensalza das SARS-CoV-2-Genom in Thüringer Stichproben mit in Deutschland, Europa und weltweit verbreiteten Viruslinien.
27.01.2021
Klimawandel | Meeresbiologie
Doppelschlag gegen Korallen
Eine neue Studie zeigt, dass Stress durch steigende Wassertemperaturen die Anpassungsfähigkeit von Korallen an die Ozeanversauerung verringert.
25.01.2021
Genetik | Evolution | Biochemie
Kälteschutz für Zellmembranen
Ein Team um die Pflanzenbiologen Prof.
25.01.2021
Anthropologie | Neurobiologie
Straßenbäume als Mittel gegen Depressionen
Straßenbäume im direkten Lebensumfeld könnten das Risiko für Depressionen in der Stadtbevölkerung reduzieren.
25.01.2021
Botanik | Ökologie
Herbst und Frühjahr sind eng verbunden
Dass Pflanzen infolge des Klimawandels immer früher beginnen zu blühen, darüber haben unter anderem Jenaer Wissenschaftlerinnen und Wissenschaftler bereits vor einiger Zeit berichtet.
25.01.2021
Mikrobiologie | Klimawandel
Eisalgen verstärken Grönlands Eisschmelze
Der grönländische Eisschild schmilzt seit 25 Jahren dramatisch. Eine bislang wenig beachtete Triebkraft hierfür sind Eisalgen. Sie verdunkeln die Oberfläche und reduzieren so die Reflexion des Sonnenlichts. Das Eis schmilzt schneller.
25.01.2021
Anatomie | Evolution
Der Giraffenhals: Neues über eine Ikone der Evolution
Die Analyse digitalisierter Sammlungsobjekte konnte eine alte Hypothese bestätigen: Die Giraffe ging einen Sonderweg in der Evolution.
25.01.2021
Zoologie | Taxonomie
Neue Schneckenarten mit prominenten Namenspatronen
Forscher*innen haben vier neue Arten von kleinen Süßwasserschnecken in Neuseeland entdeckt. Drei der neuen Arten wurden von Dr. Gerlien Verhaegen und Dr. Martin Haase vom Zoologischen Institut und Museum nach Persönlichkeiten des gesellschaftlichen Lebens benannt.
25.01.2021
Mikrobiologie | Physiologie | Bionik und Biotechnologie
Mikroschwimmer lernen effizientes Schwimmen von Luftblasen
Forscher zeigen, dass das Geheimnis des optimalen Mikroschwimmens in der Natur liegt. Ein effizienter Mikroschwimmer kann seine Schwimmtechniken von einem unerwarteten Mentor erlernen: einer Luftblase.
22.01.2021
Ethologie | Primatologie
Befreundete Schimpansen kämpfen gemeinsam gegen Rivalen
Menschen kooperieren in großen Gruppen miteinander, um Territorien zu verteidigen oder Krieg zu führen.
22.01.2021
Ökologie | Neobiota
Invasion: Bedrohung durch den Afrikanischen Krallenfrosch wesentlich größer als gedacht
Ein internationales Forscherteam nutze einen neuen Ansatz zur Abschätzung des invasiven Potenzials einer Art.
22.01.2021
Neurobiologie
Grösse von Nervenverbindungen bestimmt Stärke des Signals
Nervenzellen kommunizieren miteinander via Synapsen.